Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Mol Pharmacol ; 104(1): 1-16, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37147110

RESUMO

Current treatments for Alzheimer's disease (AD) help reduce symptoms for a limited time but do not treat the underlying pathology. To identify potential therapeutic targets for AD, an integrative network analysis was previously carried out using 364 human postmortem control, mild cognitive impairment, and AD brains. This analysis identified proline endopeptidase-like protein (PREPL), an understudied protein, as a downregulated protein in late-onset AD patients. In this study we investigate the role of PREPL. Analyses of data from human postmortem samples and PREPL knockdown (KD) cells suggest that PREPL expression modulates pathways associated with protein trafficking, synaptic activities, and lipid metabolism. Furthermore, PREPL KD impairs cell proliferation and modulates the structure of vesicles, levels of neuropeptide-processing enzymes, and secretion of neuropeptides. In addition, decrease in PREPL levels leads to changes in the levels of a number of synaptic proteins as well as changes in the levels of secreted amyloid beta (Aß) 42 peptide and Tau phosphorylation. Finally, we report that local decrease in PREPL levels in mouse hippocampus attenuates long-term potentiation, suggesting a role in synaptic plasticity. Together, our results indicate that PREPL affects neuronal function by modulating protein trafficking and synaptic function, an important mechanism of AD pathogenesis. SIGNIFICANCE STATEMENT: Integrative network analysis reveals proline endopeptidase-like protein (PREPL) to be downregulated in human sporadic late-onset Alzheimer's disease brains. Down regulation of PREPL leads to increases in amyloid beta secretion, Tau phosphorylation, and decreases in protein trafficking and long-term potentiation.


Assuntos
Doença de Alzheimer , Prolil Oligopeptidases , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , Multiômica , Prolil Oligopeptidases/metabolismo , Transporte Proteico
2.
Mol Pharmacol ; 103(1): 1-8, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36310031

RESUMO

Opioid analgesics exert their therapeutic and adverse effects by activating µ opioid receptors (MOPR); however, functional responses to MOPR activation are modulated by distinct signal transduction complexes within the brain. The ventrolateral periaqueductal gray (vlPAG) plays a critical role in modulation of nociception and analgesia, but the exact intracellular pathways associated with opioid responses in this region are not fully understood. We previously showed that knockout of the signal transduction modulator Regulator of G protein Signaling z1 (RGSz1) enhanced analgesic responses to opioids, whereas it decreased the rewarding efficacy of morphine. Here, we applied viral mediated gene transfer methodology and delivered adeno-associated virus (AAV) expressing Cre recombinase to the vlPAG of RGSz1fl\fl mice to demonstrate that downregulation of RGSz1 in this region decreases sensitivity to morphine in the place preference paradigm, under pain-free as well as neuropathic pain states. We also used retrograde viral vectors along with flippase-dependent Cre vectors to conditionally downregulate RGSz1 in vlPAG projections to the ventral tegmental area (VTA) and show that downregulation of RGSz1 prevents the development of place conditioning to low morphine doses. Consistent with the role for RGSz1 as a negative modulator of MOPR activity, RGSz1KO enhances opioid-induced cAMP inhibition in periaqueductal gray (PAG) membranes. Furthermore, using a new generation of bioluminescence resonance energy transfer (BRET) sensors, we demonstrate that RGSz1 modulates Gαz but not other Gαi family subunits and selectively impedes MOPR-mediated Gαz signaling events invoked by morphine and other opioids. Our work highlights a regional and circuit-specific role of the G protein-signaling modulator RGSz1 in morphine reward, providing insights on midbrain intracellular pathways that control addiction-related behaviors. SIGNIFICANCE STATEMENT: This study used advanced genetic mouse models to highlight the role of the signal transduction modulator named RGSz1 in responses to clinically used opioid analgesics. We show that RGSz1 controls the rewarding efficacy of opioids by actions in ventrolateral periaqueductal gray projections to the ventral tegmental area, a key component of the midbrain dopamine pathway. These studies highlight novel mechanisms by which pain-modulating structures control the rewarding efficacy of opioids.


Assuntos
Analgésicos Opioides , Morfina , Camundongos , Animais , Morfina/farmacologia , Morfina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Substância Cinzenta Periaquedutal/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP/metabolismo , Recompensa , Receptores Opioides mu/metabolismo
3.
Brain Res ; 1789: 147951, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35618016

RESUMO

Carboxypeptidase E (CPE) is an essential enzyme that contributes to the biosynthesis of the vast majority of neuropeptides and peptide hormones. There are several reports claiming that small decreases in CPE activity cause physiological changes in animals and/or cultured cells, but these studies did not provide evidence that neuropeptide levels were affected by decreased CPE activity. In the present study, we tested if CPE is a rate-limiting enzyme in neuropeptide production using CpeNeo mice, which contain a neomycin cassette within the Cpe gene that eliminates enzyme expression. Homozygous CpeNeo/Neo mice show defects found in Cpefat/fat and/or Cpe global knockout (KO) mice, including greatly decreased levels of most neuropeptides, severely impaired fertility, depressive-like behavior, adult-onset obesity, and anxiety-like behavior. Removal of the neomycin cassette with Flp recombinase under a germline promoter restored expression of CPE activity and resulted in normal behavioral and physiological properties, including levels of neuropeptides. Mice heterozygous for the CpeNeo allele have greatly reduced levels of Cpe mRNA and CPE-like enzymatic activity. Despite the decreased levels of Cpe expression, heterozygous CpeNeo mice are behaviorally and physiologically identical to wild-type mice, with normal levels of most neuropeptides. These results indicate that CPE is not a rate-limiting enzyme in the production of most neuropeptides, casting doubt upon studies claiming small decreases in CPE activity contribute to obesity or other physiological effects.


Assuntos
Carboxipeptidase H , Mutação com Perda de Função , Neuropeptídeos , RNA Mensageiro , Animais , Comportamento Animal/efeitos dos fármacos , Carboxipeptidase H/genética , Carboxipeptidase H/metabolismo , Camundongos , Camundongos Knockout , Neomicina/farmacologia , Neuropeptídeos/metabolismo , Obesidade/genética , Obesidade/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Mol Pharmacol ; 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35605991

RESUMO

PEN is an abundant neuropeptide that activates GPR83, a G protein-coupled receptor that is considered a novel therapeutic target due to its roles in regulation of feeding, reward, and anxiety-related behaviors. The major form of PEN in the brain is 22 residues in length. Previous studies have identified shorter forms of PEN in mouse brain and neuroendocrine cells; these shorter forms were named PEN18, PEN19 and PEN20, with the number reflecting the length of the peptide. The C-terminal five residues of PEN20 are identical to the C-terminus of a procholecystokinin (proCCK)-derived peptide, named proCCK56-62, that is present in mouse brain. ProCCK56-62 is highly conserved across species although it has no homology to the bioactive cholecystokinin domain. ProCCK56-62 and a longer form, proCCK56-63 were tested for their ability to engage GPR83. Both peptides bind GPR83 with high affinity, activate second messenger pathways, and induce ligand-mediated receptor endocytosis. Interestingly, the shorter PEN peptides, ProCC56-62, and ProCCK56-63 differentially activate signal transduction pathways. Whereas PEN22 and PEN20 facilitate receptor coupling to Gai, PEN18, PEN19 and ProCCK peptides facilitate coupling to Gas. Furthermore, the ProCCK peptides exhibit dose dependent Ga subtype selectivity in that they faciliate coupling to Gas at low concentrations and Gai at high concentrations. These data demonstrate that peptides derived from two distinct peptide precursors can differentially activate GPR83, and that GPR83 exhibits Ga subtype preference depending on the nature and concentration of the peptide. These results are consistent with the emerging idea that endogenous neuropeptides function as biased ligands. Significance Statement We found that peptides derived from proCCK bind and activate GPR83, a G protein-coupled receptor that is known to bind peptides derived from proSAAS. Different forms of the proCCK- and proSAAS-derived peptides show biased agonism, activating Gas or Gai depending on the length of the peptide and/or its concentration.

5.
Sci Signal ; 15(731): eabm6046, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35471943

RESUMO

Chronic pain is a major health issue, and the search for new analgesics has become increasingly important because of the addictive properties and unwanted side effects of opioids. To explore potentially new drug targets, we investigated mutations in the NTRK1 gene found in individuals with congenital insensitivity to pain with anhidrosis (CIPA). NTRK1 encodes tropomyosin receptor kinase A (TrkA), the receptor for nerve growth factor (NGF) and that contributes to nociception. Molecular modeling and biochemical analysis identified mutations that decreased the interaction between TrkA and one of its substrates and signaling effectors, phospholipase Cγ (PLCγ). We developed a cell-permeable phosphopeptide derived from TrkA (TAT-pQYP) that bound the Src homology domain 2 (SH2) of PLCγ. In HEK-293T cells, TAT-pQYP inhibited the binding of heterologously expressed TrkA to PLCγ and decreased NGF-induced, TrkA-mediated PLCγ activation and signaling. In mice, intraplantar administration of TAT-pQYP decreased mechanical sensitivity in an inflammatory pain model, suggesting that targeting this interaction may be analgesic. The findings demonstrate a strategy to identify new targets for pain relief by analyzing the signaling pathways that are perturbed in CIPA.


Assuntos
Hipo-Hidrose , Mutação , Insensibilidade Congênita à Dor , Fosfolipase C gama , Receptor trkA , Analgésicos/farmacologia , Animais , Canalopatias/genética , Canalopatias/metabolismo , Células HEK293 , Humanos , Hipo-Hidrose/genética , Hipo-Hidrose/metabolismo , Camundongos , Fator de Crescimento Neural/genética , Fator de Crescimento Neural/farmacologia , Dor/genética , Dor/metabolismo , Insensibilidade Congênita à Dor/genética , Insensibilidade Congênita à Dor/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Receptor trkA/genética , Receptor trkA/metabolismo
6.
Pain ; 163(7): 1414-1423, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724682

RESUMO

ABSTRACT: Diabetic neuropathy, often associated with diabetes mellitus, is a painful condition with no known effective treatment except glycemic control. Studies with neuropathic pain models report alterations in cannabinoid and opioid receptor expression levels; receptors whose activation induces analgesia. We examined whether interactions between CB1R and opioid receptors could be targeted for the treatment of diabetic neuropathy. For this, we generated antibodies that selectively recognize native CB1R-MOR and CB1R-DOR heteromers using a subtractive immunization strategy. We assessed the levels of CB1R, MOR, DOR, and interacting complexes using a model of streptozotocin-induced diabetic neuropathy and detected increased levels of CB1R, MOR, DOR, and CB1R-MOR complexes compared with those in controls. An examination of G-protein signaling revealed that activity induced by the MOR, but not the DOR agonist, was potentiated by low nanomolar doses of CB1R ligands, including antagonists, suggesting an allosteric modulation of MOR signaling by CB1R ligands within CB1R-MOR complexes. Because the peptide endocannabinoid, hemopressin, caused a significant potentiation of MOR activity, we examined its effect on mechanical allodynia and found that it blocked allodynia in wild-type mice and mice with diabetic neuropathy lacking DOR (but have CB1R-MOR complexes). However, hemopressin does not alter the levels of CB1R-MOR complexes in diabetic mice lacking DOR but increases the levels of CB1R-DOR complexes in diabetic mice lacking MOR. Together, these results suggest the involvement of CB1R-MOR and CB1R-DOR complexes in diabetic neuropathy and that hemopressin could be developed as a potential therapeutic for the treatment of this painful condition.


Assuntos
Canabinoides , Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/tratamento farmacológico , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Hiperalgesia/etiologia , Ligantes , Camundongos , Neuralgia/tratamento farmacológico , Receptores Opioides , Receptores Opioides mu/metabolismo
7.
Br J Pharmacol ; 179(8): 1544-1564, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33817785

RESUMO

Oxytocin (OT) and vasopressin (AVP) are endogenous ligands for OT and AVP receptors in the brain and in the peripheral system. Several studies demonstrate that OT and AVP have opposite roles in modulating stress, anxiety and social behaviours. Interestingly, both peptides and their receptors exhibit high sequence homology which could account for the biased signalling interaction of the peptides with OT and AVP receptors. However, how and under which conditions this crosstalk occurs in vivo remains unclear. In this review we shed light on the complexity of the roles of OT and AVP, by focusing on their signalling and behavioural differences and exploring the crosstalk between the receptor systems. Moreover, we discuss the potential of OT and AVP receptors as therapeutic targets to treat human disorders, such as autism, schizophrenia and drug abuse. LINKED ARTICLES: This article is part of a themed issue on Building Bridges in Neuropharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.8/issuetoc.


Assuntos
Ocitocina , Vasopressinas , Encéfalo/metabolismo , Humanos , Ligantes , Ocitocina/farmacologia , Ocitocina/uso terapêutico , Receptores de Ocitocina/metabolismo , Receptores de Vasopressinas/metabolismo , Comportamento Social , Vasopressinas/farmacologia
8.
Front Neurosci ; 15: 675769, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512237

RESUMO

Anxiety disorders are prevalent across the United States and result in a large personal and societal burden. Currently, numerous therapeutic and pharmaceutical treatment options exist. However, drugs to classical receptor targets have shown limited efficacy and often come with unpleasant side effects, highlighting the need to identify novel targets involved in the etiology and treatment of anxiety disorders. GPR83, a recently deorphanized receptor activated by the abundant neuropeptide PEN, has also been identified as a glucocorticoid regulated receptor (and named GIR) suggesting that this receptor may be involved in stress-responses that underlie anxiety. Consistent with this, GPR83 null mice have been found to be resistant to stress-induced anxiety. However, studies examining the role of GPR83 within specific brain regions or potential sex differences have been lacking. In this study, we investigate anxiety-related behaviors in male and female mice with global knockout and following local GPR83 knockdown in female mice. We find that a global knockdown of GPR83 has minimal impact on anxiety-like behaviors in female mice and a decrease in anxiety-related behaviors in male mice. In contrast, a local GPR83 knockdown in the basolateral amygdala leads to more anxiety-related behaviors in female mice. Local GPR83 knockdown in the central amygdala or nucleus accumbens (NAc) showed no significant effect on anxiety-related behaviors. Finally, dexamethasone administration leads to a significant decrease in receptor expression in the amygdala and NAc of female mice. Together, our studies uncover a significant, but divergent role for GPR83 in different brain regions in the regulation of anxiety-related behaviors, which is furthermore dependent on sex.

9.
Elife ; 102021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33908346

RESUMO

Many signal transduction systems have an apparent redundancy built into them, where multiple physiological agonists activate the same receptors. Whether this is true redundancy, or whether this provides an as-yet unrecognized specificity in downstream signaling, is not well understood. We address this question using the kappa opioid receptor (KOR), a physiologically relevant G protein-coupled receptor (GPCR) that is activated by multiple members of the Dynorphin family of opioid peptides. We show that two related peptides, Dynorphin A and Dynorphin B, bind and activate KOR to similar extents in mammalian neuroendocrine cells and rat striatal neurons, but localize KOR to distinct intracellular compartments and drive different post-endocytic fates of the receptor. Strikingly, localization of KOR to the degradative pathway by Dynorphin A induces sustained KOR signaling from these compartments. Our results suggest that seemingly redundant endogenous peptides can fine-tune signaling by regulating the spatiotemporal profile of KOR signaling.


Assuntos
Dinorfinas/metabolismo , Receptores Opioides kappa/metabolismo , Animais , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Células Neuroendócrinas/metabolismo , Neurônios/metabolismo , Células PC12 , Ratos , Receptores Opioides kappa/genética , Transdução de Sinais
10.
Commun Biol ; 4(1): 238, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619305

RESUMO

Antibodies represent powerful tools to examine signal transduction pathways. Here, we present a strategy integrating multiple state-of-the-art methods to produce, validate, and utilize antibodies. Focusing on understudied synaptic proteins, we generated 137 recombinant antibodies. We used yeast display antibody libraries from the B cells of immunized rabbits, followed by FACS sorting under stringent conditions to identify high affinity antibodies. The antibodies were validated by high-throughput functional screening, and genome editing. Next, we explored the temporal dynamics of signaling in single cells. A subset of antibodies targeting opioid receptors were used to examine the effect of treatment with opiates that have played central roles in the worsening of the 'opioid epidemic.' We show that morphine and fentanyl exhibit differential temporal dynamics of receptor phosphorylation. In summary, high-throughput approaches can lead to the identification of antibody-based tools required for an in-depth understanding of the temporal dynamics of opioid signaling.


Assuntos
Anticorpos/farmacologia , Especificidade de Anticorpos , Ensaios de Triagem em Larga Escala , Proteína Quinase C/antagonistas & inibidores , Receptores Opioides mu/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Analgésicos Opioides/farmacologia , Animais , Anticorpos/imunologia , Linhagem Celular Tumoral , Ativação Enzimática , Fentanila/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Fosforilação , Proteína Quinase C/imunologia , Proteína Quinase C/metabolismo , Coelhos , Receptores Opioides mu/imunologia , Receptores Opioides mu/metabolismo , Transdução de Sinais , Sinapses/imunologia , Sinapses/metabolismo , Fatores de Tempo
11.
Cell Mol Neurobiol ; 41(5): 1103-1118, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33389463

RESUMO

Activation of µ, δ, and κ opioid receptors by endogenous opioid peptides leads to the regulation of many emotional and physiological responses. The three major endogenous opioid peptides, ß-endorphin, enkephalins, and dynorphins result from the processing of three main precursors: proopiomelanocortin, proenkephalin, and prodynorphin. Using a knockout approach, we sought to determine whether the absence of endogenous opioid peptides would affect the expression or activity of opioid receptors in mice lacking either proenkephalin, ß-endorphin, or both. Since gene knockout can lead to changes in the levels of peptides generated from related precursors by compensatory mechanisms, we directly measured the levels of Leu-enkephalin and dynorphin-derived peptides in the brain of animals lacking proenkephalin, ß-endorphin, or both. We find that whereas the levels of dynorphin-derived peptides were relatively unaltered, the levels of Leu-enkephalin were substantially decreased compared to wild-type mice suggesting that preproenkephalin is the major source of Leu-enkephalin. This data also suggests that the lack of ß-endorphin and/or proenkephalin does not lead to a compensatory change in prodynorphin processing. Next, we examined the effect of loss of the endogenous peptides on the regulation of opioid receptor levels and activity in specific regions of the brain. We also compared the receptor levels and activity in males and females and show that the lack of ß-endorphin and/or proenkephalin leads to differential modulation of the three opioid receptors in a region- and gender-specific manner. These results suggest that endogenous opioid peptides are important modulators of the expression and activity of opioid receptors in the brain.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/metabolismo , Peptídeos Opioides/metabolismo , Receptores Opioides/agonistas , Receptores Opioides/metabolismo , Analgésicos Opioides/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Ala(2)-MePhe(4)-Gly(5)-Encefalina/metabolismo , Ala(2)-MePhe(4)-Gly(5)-Encefalina/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptídeos Opioides/farmacologia
12.
Cell Chem Biol ; 28(1): 105-112.e4, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33217339

RESUMO

Neuropeptides and peptide hormones are important cell-cell signaling molecules that mediate many physiological processes. Unlike classic neurotransmitters, peptides undergo cell-type-specific post-translational modifications that affect their biological activity. To enable the identification of the peptide repertoire of a genetically defined cell type, we generated mice with a conditional disruption of the gene for carboxypeptidase E (Cpe), an essential neuropeptide-processing enzyme. The loss of Cpe leads to accumulation of neuropeptide precursors containing C-terminal basic residues, which serve as tags for affinity purification. The purified peptides are subsequently identified using quantitative peptidomics, thereby revealing the specific forms of neuropeptides in cells with the disrupted Cpe gene. To validate the method, we used mice expressing Cre recombinase under the proopiomelanocortin (Pomc) promoter and analyzed hypothalamic and pituitary extracts, detecting peptides derived from proopiomelanocortin (as expected) and also proSAAS in POMC neurons. This technique enables the analyses of specific forms of peptides in any Cre-expressing cell type.


Assuntos
Encéfalo/metabolismo , Carboxipeptidase H/genética , Neuropeptídeos/análise , Hipófise/metabolismo , Animais , Encéfalo/citologia , Carboxipeptidase H/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuropeptídeos/metabolismo , Hipófise/citologia
13.
Pharmacol Res Perspect ; 8(6): e00682, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169541

RESUMO

Cannabidiol (CBD) is the second most abundant component of the Cannabis plant and is known to have effects distinct from Δ9 -tetrahydrocannabinol (THC). Many studies that examined the behavioral effects of CBD concluded that it lacks the psychotomimetic effects attributed to THC. However, CBD was shown to have a broad spectrum of effects on several conditions such as anxiety, inflammation, neuropathic pain, and epilepsy. It is currently thought that CBD engages different targets and hence CBD's effects are thought to be due to multiple molecular mechanisms of action. A well-accepted set of targets include GPCRs and ion channels, with the serotonin 5-HT1A receptor and the transient receptor potential cation channel TRPV1 channel being the two main targets. CBD has also been thought to target G protein-coupled receptors (GPCRs) such as cannabinoid and opioid receptors. Other studies have suggested a role for additional GPCRs and ion channels as targets of CBD. Currently, the clinical efficacy of CBD is not completely understood. Evidence derived from randomized clinical trials, in vitro and in vivo models and real-world observations support the use of CBD as a drug treatment option for anxiety, neuropathy, and many other conditions. Hence an understanding of the current status of the field as it relates to the targets for CBD is of great interest so, in this review, we include findings from recent studies that highlight these main targets.


Assuntos
Canabidiol/administração & dosagem , Canabidiol/metabolismo , Terapia de Alvo Molecular/métodos , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Humanos , Terapia de Alvo Molecular/tendências , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores Dopaminérgicos/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais/fisiologia
14.
J Med Chem ; 63(22): 13618-13637, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33170687

RESUMO

In this work, we studied a series of carfentanyl amide-based opioid derivatives targeting the mu opioid receptor (µOR) and the delta opioid receptor (δOR) heteromer as a credible novel target in pain management therapy. We identified a lead compound named MP135 that exhibits high G-protein activity at µ-δ heteromers compared to the homomeric δOR or µOR and low ß-arrestin2 recruitment activity at all three. Furthermore, MP135 exhibits distinct signaling profile, as compared to the previously identified agonist targeting µ-δ heteromers, CYM51010. Pharmacological characterization of MP135 supports the utility of this compound as a molecule that could be developed as an antinociceptive agent similar to morphine in rodents. In vivo characterization reveals that MP135 maintains untoward side effects such as respiratory depression and reward behavior; together, these results suggest that optimization of MP135 is necessary for the development of therapeutics that suppress the classical side effects associated with conventional clinical opioids.


Assuntos
Fentanila/análogos & derivados , Receptores Opioides delta/agonistas , Analgésicos/síntese química , Analgésicos/farmacologia , Animais , Linhagem Celular , Fentanila/síntese química , Fentanila/farmacologia , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Medição da Dor/efeitos dos fármacos , Medição da Dor/métodos , Ratos , Ratos Long-Evans , Receptores Opioides delta/metabolismo
16.
Ann Neurol ; 88(6): 1237-1243, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32833276

RESUMO

A 10-year-old girl presented with ileus, urinary retention, dry mouth, lack of tears, fixed dilated pupils, and diffuse anhidrosis 7 days after a febrile illness. We hypothesized that her syndrome was due to autoimmunity against muscarinic acetylcholine receptors, blocking their activation. Using an indirect enzyme-linked immunosorbent assay for all 5 muscarinic receptors (M1 -M5 ), we identified in the patient's serum antibodies that selectively bound to M3 receptors. In vitro functional studies confirmed that these autoantibodies selectively blocked M3 receptor activation. Thus, autoantibodies against M3 acetylcholine receptors cause acute postganglionic cholinergic dysautonomia. ANN NEUROL 2020;88:1237-1243.


Assuntos
Autoanticorpos/imunologia , Disautonomias Primárias/imunologia , Receptor Muscarínico M3/imunologia , Autoanticorpos/sangue , Criança , Feminino , Humanos , Receptor Muscarínico M3/antagonistas & inibidores
17.
Mol Pharmacol ; 98(2): 96-108, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32487735

RESUMO

In the mid-1970s, an intense race to identify endogenous substances that activated the same receptors as opiates resulted in the identification of the first endogenous opioid peptides. Since then, >20 peptides with opioid receptor activity have been discovered, all of which are generated from three precursors, proenkephalin, prodynorphin, and proopiomelanocortin, by sequential proteolytic processing by prohormone convertases and carboxypeptidase E. Each of these peptides binds to all three of the opioid receptor types (µ, δ, or κ), albeit with differing affinities. Peptides derived from proenkephalin and prodynorphin are broadly distributed in the brain, and mRNA encoding all three precursors are highly expressed in some peripheral tissues. Various approaches have been used to explore the functions of the opioid peptides in specific behaviors and brain circuits. These methods include directly administering the peptides ex vivo (i.e., to excised tissue) or in vivo (in animals), using antagonists of opioid receptors to infer endogenous peptide activity, and genetic knockout of opioid peptide precursors. Collectively, these studies add to our current understanding of the function of endogenous opioids, especially when similar results are found using different approaches. We briefly review the history of identification of opioid peptides, highlight the major findings, address several myths that are widely accepted but not supported by recent data, and discuss unanswered questions and future directions for research. SIGNIFICANCE STATEMENT: Activation of the opioid receptors by opiates and synthetic drugs leads to central and peripheral biological effects, including analgesia and respiratory depression, but these may not be the primary functions of the endogenous opioid peptides. Instead, the opioid peptides play complex and overlapping roles in a variety of systems, including reward pathways, and an important direction for research is the delineation of the role of individual peptides.


Assuntos
Peptídeos Opioides/genética , Peptídeos Opioides/metabolismo , Receptores Opioides/metabolismo , Animais , Encéfalo/metabolismo , Carboxipeptidase H/metabolismo , Encefalinas/química , Encefalinas/genética , Humanos , Pró-Opiomelanocortina/química , Pró-Opiomelanocortina/genética , Pró-Proteína Convertases/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética
18.
Proc Natl Acad Sci U S A ; 117(21): 11820-11828, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32393639

RESUMO

Opioids, such as morphine and fentanyl, are widely used for the treatment of severe pain; however, prolonged treatment with these drugs leads to the development of tolerance and can lead to opioid use disorder. The "Opioid Epidemic" has generated a drive for a deeper understanding of the fundamental signaling mechanisms of opioid receptors. It is generally thought that the three types of opioid receptors (µ, δ, κ) are activated by endogenous peptides derived from three different precursors: Proopiomelanocortin, proenkephalin, and prodynorphin. Posttranslational processing of these precursors generates >20 peptides with opioid receptor activity, leading to a long-standing question of the significance of this repertoire of peptides. Here, we address some aspects of this question using a technical tour de force approach to systematically evaluate ligand binding and signaling properties ([35S]GTPγS binding and ß-arrestin recruitment) of 22 peptides at each of the three opioid receptors. We show that nearly all tested peptides are able to activate the three opioid receptors, and many of them exhibit agonist-directed receptor signaling (functional selectivity). Our data also challenge the dogma that shorter forms of ß-endorphin do not exhibit receptor activity; we show that they exhibit robust signaling in cultured cells and in an acute brain slice preparation. Collectively, this information lays the groundwork for improved understanding of the endogenous opioid system that will help in developing more effective treatments for pain and addiction.


Assuntos
Peptídeos Opioides , Receptores Opioides/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Peptídeos Opioides/agonistas , Peptídeos Opioides/metabolismo , Pró-Opiomelanocortina/metabolismo , Ligação Proteica , Ratos , Ratos Sprague-Dawley
19.
Trends Neurosci ; 43(6): 417-432, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32459993

RESUMO

Post-translational modifications (PTMs) are key events in signal transduction since they affect protein function by regulating their abundance and/or activity. PTMs involve the covalent attachment of functional groups to specific amino acids. Since they tend to be generally reversible, PTMs serve as regulators of signal transduction pathways. G-protein-coupled receptors (GPCRs) are major signaling proteins that undergo multiple types of PTMs. In this Review, we focus on the opioid receptors, members of GPCR family A, and highlight recent advances in the field that have underscored the importance of PTMs in the functional regulation of these receptors. Since opioid receptor activity plays a central role in the development of tolerance and addiction to morphine and other drugs of abuse, understanding the molecular mechanisms regulating receptor activity is of fundamental importance.


Assuntos
Processamento de Proteína Pós-Traducional , Receptores Opioides , Humanos , Fosforilação , Receptores Opioides/metabolismo , Transdução de Sinais , Ubiquitinação
20.
Pain ; 161(4): 842-855, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31815916

RESUMO

Several reports support the idea that µ- and δ-opioid receptors (ORs) may exist as heterodimers in brain regions involved in pain signaling. The unique pharmacology of these heteromers may present a novel analgesic target. However, the role of µ-δ heteromers in sensory neurons involved in pain and opioid analgesia remains unclear, particularly during neuropathic pain. We examined the effects of spinal nerve injury on µ-δ heteromer expression in dorsal root ganglion (DRG) neurons and the effects of a µ-δ heteromer-targeting agonist, CYM51010, on neuropathic pain behavior in rats and mice. An L5 spinal nerve ligation (SNL) in rats significantly decreased µ-δ heteromer expression in L5 DRG but increased heteromer levels in uninjured L4 DRG. Importantly, in SNL rats, subcutaneous injection of CYM51010 inhibited mechanical hypersensitivity in a dose-related manner (EC50: 1.09 mg/kg) and also reversed heat hyperalgesia and attenuated ongoing pain (2 mg/kg, subcutaneously). HEK-293T cell surface-labeled with µ- and δ-ORs internalized both receptors after exposure to CYM51010. By contrast, in cells transfected with µ-OR alone, CYM51010 was significantly less effective at inducing receptor internalization. Electrophysiologic studies showed that CYM51010 inhibited the C-component and windup phenomenon in spinal wide dynamic range neurons of SNL rats. The pain inhibitory effects of CYM51010 persisted in morphine-tolerant rats but was markedly attenuated in µ-OR knockout mice. Our studies show that spinal nerve injury may increase µ-δ heterodimerization in uninjured DRG neurons, and that µ-δ heteromers may be a potential therapeutic target for relieving neuropathic pain, even under conditions of morphine tolerance.


Assuntos
Neuralgia , Animais , Gânglios Espinais , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuralgia/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta , Roedores , Nervos Espinhais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...